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Fig. 1

Integer Binary
0: 0000
1: 0001
2: 0010
3: 0011
4: 0100
5: 0101
6: 0110
7 0111
8: 1000
9: 1001
10: 1010
11: 1011
12: 1100
13: 1101
14: 1110
15: 1111

Fig. 2

Bit Value if 0 Value if 1 Value closest to “5”
1st Ooxx =0 1xoxx = +16 =16 0 {0xxxxx)

2nd 00xxx = 0 O1xxxx = +8 = 8 8 {01xxx)

3 0i0xx=+8=8 01ixx = +8-4 =4 4 (011xx)

4tk 0110x=48-4=4 0111x = +8-4+2 =6 4 & 6 are equally close
5t (if 0110x selected) | 01100 = +8-4 =4 01101=+8-4+1=5 |5{(01101)

5th (if 0111x selected) | 01110 = +8-4+2=6 | 01111 =+8-4+2-1=5 | 5{01111)
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Fig. 3
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Integer Binary Equation
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Fig. 8

Truncated Derived Low
Integer Binary CR Value CR Value Order Bit

0: 0000 00000 0000 0

0100 01100 0110 0

1000 11000 1100 0

10: 1010 11110 1111 0

14: 1110 10010 1001 0

11001 101011 10101 1

73: 1001001 11011011 1101101 1
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Fig. 9

L~ 240
Set High Order Binary Bit Do Equal
to High Order C Value Bit C,

¢ ~ 246
Fork=n-2t0 -

¢ — 248

Set Dk = Di+1 XOR Cie1
¢ o~ 250
Next k

All Bits Received?

256

Employ Post-Rounding
Routine

End




U.S. Patent Sep. 20, 2016 Sheet 8 of 11 US 9,450,601 B1

Fig. 10
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Fig. 11
Truncated Binary
C Value D Value Integer
0000 0000 0

10101 11001 25

1101101 1001001 /3
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1
CONTINUOUS ROUNDING OF DIFFERING
BIT LENGTHS

BACKGROUND

When a binary value is truncated due to a transmission
error, storage requirement, or because a coarse value is
desired, the result may or may not represent a correctly
rounded value. For example, the binary stream 1100.1101
can be truncated to 6 bits as 1100.11 which is the correctly
rounded value of the original data. However if the stream is
truncated to 4 bits, the result 1100 is not a properly rounded
value. This value incorrectly rounds down (last bit is a 0),
whereas the rounded up value, 1101, is closer to the original
data. Although it is easy to round correctly to any bit
precision, it is only possible to do so if the required bit
precision is known in advance.

SUMMARY

Embodiments of the present technology relate to a system
and method for encoding and decoding binary numbers in a
way which improves the accuracy and efficiency of one or
more computing devices working with the decoded binary
numbers. In particular, encoding and decoding of a binary
number will result in the same binary number before and
after encoding/decoding when a complete encoded value is
transmitted and/or stored. Additionally, it may happen that
less than all bits of the encoded value are transmitted or
stored, for example due to transmission error, storage
requirement, or because a coarse preview of the data in
advance of the full number is desired. In this instant, given
one or more missing bits in the encoded value, the encoded
value will correctly round up or down upon decode to most
accurately reflect the original binary number which was
encoded.

This Summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a table of non-negative integer values and the
corresponding binary values which may be represented by 4
bits.

FIG. 2 is a table conceptually illustrating encoding of a
sample integer number 5 in accordance with aspects of the
present technology.

FIG. 3 is a flowchart illustrating an encoding portion of a
continuous rounding routine in accordance with aspects of
the present technology.

FIG. 4 is a flowchart providing additional detail of step
200 from FIG. 3.

FIG. 5 is an illustration of Boolean logic gates for
encoding binary numbers in accordance with aspects of the
present technology.

FIG. 6 is a table illustrating resulting encoded values for
a number of binary inputs.

FIG. 7 is an illustration of Boolean logic gates for
deriving a low order bit of a value encoded in accordance
with aspects of the present technology.

FIG. 8 is a table illustrating resulting encoded values and
truncated encoded values for a number of binary inputs.
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FIG. 9 is a flowchart illustrating a decoding portion of a
continuous rounding routine in accordance with aspects of
the present technology.

FIG. 10 is an illustration of Boolean logic gates for
decoding encoded values in accordance with aspects of the
present technology.

FIG. 11 is a table illustrating encoded values and the
corresponding binary number obtained upon decode of the
encoded values.

FIG. 12 is a table illustrating standard and alternative
encoded values obtained according to embodiments of the
present technology.

FIG. 13 is a block diagram of an illustrative computing
system for implementing aspects of the present technology.

DETAILED DESCRIPTION

Embodiments of the present technology will now be
described with reference to the figures, which in embodi-
ments relate to a method of encoding numbers using a
continuous rounding routine. The continuous rounding rou-
tine which will result in the correct value when all bits of the
encoded number are received, and will result in the opti-
mally rounded value when less than all of the bits of the
encoded number are received. The algorithm rounds the
transmitted value to a number which most closely approxi-
mates the original correct value for the bits that are trans-
mitted, regardless of how many of the bits of the original
value are transmitted. The continuous rounding routine
employs a sequentially alternating sign (+/-) in encoding a
binary value as explained below.

Transmission of values encoded by the continuous round-
ing routine of the present technology improves the efficiency
and accuracy of computing devices working with the trans-
mitted values. For example, the present technology prevents
computing systems from working with a rounded up value
in the event less than all of the bits of an original number are
received, when the rounded up value would more closely
approximate the original number.

As will be appreciated by one skilled in the art, aspects of
the present disclosure may be illustrated and described
herein in any of a number of patentable classes or context
including any new and useful process, machine, manufac-
ture, or composition of matter, or any new and useful
improvement thereof. Accordingly, aspects of the present
disclosure may be implemented entirely in hardware,
entirely in software (including firmware, resident software,
micro-code, etc.) or combining software and hardware
implementations that may all generally be referred to herein
as a “routine.” Furthermore, aspects of the present disclosure
may take the form of a computer program product embodied
in one or more computer readable media having computer
readable program code embodied thereon.

Any combination of one or more computer readable
media may be utilized. The computer readable media may be
a computer readable signal medium or a computer readable
storage medium. A computer readable storage medium may
be, for example, but not limited to, an electronic, magnetic,
optical, electromagnetic, or semiconductor system, appara-
tus, or device, or any suitable combination of the foregoing.
More specific examples (a non-exhaustive list) of the com-
puter readable storage medium would include the following:
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an appropriate optical fiber with a repeater, a
portable compact disc read-only memory (CD-ROM), an
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optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device. A computer readable storage medium
does not include transitory, modulated or other types of
signals

Computer program code for carrying out operations for
aspects of the present disclosure may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, CII,
VB.NET, Python or the like, conventional procedural pro-
gramming languages, such as the “c” programming lan-
guage, Visual Basic, Fortran 2003, Perl, COBOL 2002, PHP,
ABAP, dynamic programming languages such as Python,
Ruby and Groovy, or other programming languages. The
program code may execute on a client device of a user, a
computing system remote from a user such as a centralized
server, or partly on the client device and partly on the
centralized server. The centralized server may be connected
to the user’s client device through any type of network,
including a local area network (LAN) or a wide area network
(WAN), or the connection may be made to an external
computer (for example, through the Internet using an Inter-
net Service Provider).

Aspects of the present disclosure are described herein
with reference to flowchart illustrations and/or block dia-
grams of methods, apparatuses (systems) and computer
program products according to embodiments of the disclo-
sure. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable instruction execution apparatus, create a mechanism
for implementing the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that when executed can
direct a computer, processor other programmable data pro-
cessing apparatus, or other devices to function in a particular
manner, such that the instructions when stored in the com-
puter readable medium produce an article of manufacture
including instructions which when executed, cause a com-
puter or processor to implement the function/act specified in
the flowchart and/or block diagram block or blocks. The
computer program instructions may also be loaded onto a
computer, other programmable instruction execution appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatuses or other devices to produce a computer imple-
mented process. In this event, the instructions which execute
on the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

In accordance with aspects of the present technology,
binary values to be transmitted may first be encoded using
an encoding sequence of the continuous rounding routine.
Once transmitted, the received encoded value may be
decoded using a decoding sequence of the continuous round-
ing routine. In order to explain the continuous rounding
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routine, standard 4-bit unsigned binary numbers ranging
between 0 and 15 are examined with reference to FIG. 1. A
standard binary number represents a sum of different powers
of 2, in which a “1” bit specifies the power of 2 is added to
the sum, and a “0” bit specifies that it is not added to the
sum. There is a single manner in which any decimal integer
may be expressed as a binary value. For example:

5=0101(binary)=22+2°=4+1 (Eq. 1)
11=1011(binary)=23+2'+20=8+2+1 (Eq. 2)
15=1111(binary)=23+224+2'4+20=8+442+1 (Eq. 3)

However, in accordance with aspects of the present tech-
nology, powers of two may also be subtracted. This provides
more than one way to arrive at a desired integer sum of
powers of 2. For example, the decimal number 5 could be
expressed as any of the following:

5=23-22420=8-4+1 (Eq. 4)
5=23_22421 20-8-442-1 (Eq. 5)
5=23_21.20-8 21 (Eq. 6)
5=2242120-442_1 (Eq. 7)

Equations 4-7 share the property of the original binary
sum (Equations 1-3) that each power of 2 may be added to
the final sum or not, but may only be added once. Equations
4 and 5 also have the additional property that the sign bits
alternate along the equation, causing the intermediate sum to
“zero in” on the target result. Each successive power of 2
added or subtracted gets closer to the actual value (or at least
does not get farther away). By contrast, in conventional
binary the intermediate sums monotonically increase to
“reach” the target result. The continuous rounding routine
uses the feature of Equations 4 and 5 of alternatingly adding
powers of 2 and subtracting powers of 2. Stated another way,
the continuous rounding routine alternates the sign (+ or -)
when adding powers of 2 to the sum, starting with a positive
sign. This also has the benefit that it is not necessary to
transmit the sign for each bit.

FIG. 2 illustrates the concept of the continuous rounding
routine for best rounding of the integer value of 5 for
successive bits received, using alternating signs. In general,
as explained below, successive “1” bits in the encoded value,
raised to their respective base 10 values, are alternatingly
added to and subtracted from the running sum to approach
the original base 10 value. FIG. 2 again uses the example of
a 4-bit unsigned binary value. However, it is understood that
the continuous rounding routine would work for binary
values of less than or greater than 4-bits. Where a bitis a “1,”
2 to the power of the bit is added to or subtracted from the
total sum. Where a bit is “0,” nothing is added or subtracted
from the total sum.

Referring to the first line of FIG. 2, when the first (highest
order) bit is being transmitted, the value of the first bit is best
transmitted as a “0.” That is because, if the received value
of the first bit is “0” (and no other bits have been received),
the received value would be “0.” If the received value of the
first bit is “1” (and no other bits have been received), the
received value would 16. 0 is closer than 16 to the original
integer 5. Thus, when encoding the integer value 5, the
continuous rounding routine would encode the first bit as a
“.»

When the second bit is being transmitted, the value of the
second bit is best transmitted as a “1.” That is because, if the
received value of the second bit is “1” (with the first bit
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already encoded as a “0” as explained above, and no other
bits having been received), the received value would be 8. If
the received value of the second bit is “0” (with the first bit
encoded as a “0,” and no other bits have been received), the
received value would “0”. 8 is closer than “0” to the original
integer 5. Thus, when encoding the integer value 5, the
continuous rounding routine would encode the second bit as
a“1.”

When the third bit is being transmitted (with the first two
bits already encoded as a “01” as explained above), the value
of the third bit is best transmitted as a “1.” That is because,
if the received value of the third bit is “0,” the received value
would be 8. If the received value of the third bit is “1” (and
no other bits have been received), the received value would
4 (8-4). 4 is closer than 8 to the original integer 5. Thus,
when encoding the integer value 5, the continuous rounding
routine would encode the third bit as a “1.”

When the fourth bit is being transmitted (with the first 3
bits already encoded as “011” as explained above), the value
of the fourth bit could be rounded to either a “0” or a “1”
under the continuous rounding routine. That is because, if
the received value of the fourth bit is “0”, the received value
would be 4 (8—4). If the received value of the fourth bit is
“1,” the received value would 6 (8-4+2). 4 and 6 are
equidistant from the original integer 5. Thus, when encoding
the integer value 5, the continuous rounding routine would
encode the third bit as either a “1” or a “0.”

If five bits are received (with the first 3 bits encoded as
“011,” and the fourth bit encoded as either a “1” or a <“0,” as
explained above), the value of the fifth and final bit could be
rounded to a “1” according to the continuous rounding
routine. That is because, in a first case where the fourth bit
is a <0,” if the received value of the fifth bit is also “0,” the
received value would be 4 (8-4). Where the fourth bit is
taken as “0,” if the received value of the fifth bit is “1,” the
received value would 5 (8-4+1). 5 is closer than 4 to the
original integer 5 (is in fact equal to 5). Thus, in the first
case, the fifth bit would be a “1.” In second case where the
fourth bit is a ““1,” if the received value of the fifth bit is “0,”
the received value would be 6 (8-4+2). Where the fourth bit
is taken as “1,” if the received value of the fifth bit is “1,”
the received value would 5 (8—-4+2-1). 5 is closer than 6 to
the original integer 5 (is in fact equal to 5). Thus, in the
second case, the fifth bit would also be a “1.”

As illustrated in the above discussion, each bit in the
transmitted value encoded by the continuous rounding rou-
tine rounds correctly to the best approximation of the
original integer value. Stated another way, the original
binary number is encoded into an encoded value, such that
one or more high order bits that remain in the encoded value
when one or more lower order bits are omitted always
represent a correct rounding of the encoded value up or
down to most accurately approximate the original binary
number. Thus, should it happen that less than the entire four
bits are received, the number of bits received will represent
the correct rounding of the number (up or down) to most
closely approximate the original integer value.

As also illustrated in the above conceptual discussion of
the continuous rounding routine, the algorithm may result in
more than one encoded value. In the above example con-
ceptually illustrating the encoding of the integer value 5, the
continuous rounding routine returned two possible encoded
values: 01101 and 01111. As illustrated below, the continu-
ous rounding routine may be implemented as XOR Boolean
logic gates, which produces a first possible encoded value
for a given integer which has the property that the number
of “1” bits in a complete encoded value sum to an even
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number. This first possible encoded value is referred to
herein as a standard encoded value. However, when imple-
mented by other means, the continuous rounding routine
may alternatively produce the second of the two possible
encoded values for the given integer which has the property
that the number of “1” bits sum to an odd number in a
complete encoded value. This second possible encoded
value is referred to herein as an alternate encoded value.

Moving from a conceptual discussion of the continuous
rounding routine, a circuit or processor of a computing
device may implement the encoding portion of the continu-
ous rounding routine as shown in the flowchart of FIG. 3. In
step 200, the original binary value representing the integer
is applied to XOR Boolean gates 100 as shown in FIG. 5.
Further details of step 200 are shown in the flowchart of FIG.
4. While the example below works with integer values, the
continuous rounding routine as described below may be
used to encode and decode non-integer values in further
embodiments.

The example of FIG. 5 includes three XOR Boolean gates
102 for encoding an original four bit binary number. How-
ever, in general, for any n-bit input binary number, B, the
XOR Boolean gates 100 may have n-1 XOR Boolean gates.
In general, in step 200, the continuous rounding routine
takes an n-bit input binary number, B, and outputs an
encoded value, C, having n+1 bits. The value C encoded by
the XOR Boolean gates 100 is referred to herein as a
continuous rounding value. In the following description and
accompanying figures, the low order bit of the input B is B,,.
Thus, the high order bit in an n-bit input B is B, ;. Similarly,
the low order bit of the encoded value C is C,. Thus, the high
order bit in an n+1 bit encoded value C is C,,.

In operation, as illustrated below, in the XOR Boolean
gates 100, the original input binary number, B, is XORed
with a copy of itself that has been shifted by one bit in either
direction. Specifically, in step 220, the continuous rounding
routine sets the high order bit of the C value equal to the high
order bit of the input binary value, B:

Co=Bs (Eq. 8)

In steps 224, 226 and 228, the continuous rounding routine
derives the bits of C from C, | to C, by providing the bits of
B as inputs to the respective XOR gates 102. Specifically,
B, ;.; is XORed with B, .

Co1:178,1.1 B 20 (Eq. 9)

Lastly, in step 230, the continuous rounding routine sets the
low order bit of the input binary value, B, equal to the low
order bit of the C value:

Cy=B, (Eq. 10)

FIG. 6 is a table showing integer values (in this example,
0-15 and some example larger numbers that require more
than 4 bits to express), the input binary number B, the
alternating-sign equation summing to the integer value, and
the encoded C value obtained by the continuous rounding
routine. As noted, the C values for input binary numbers of
less than or greater than 4 bits may be obtained in the same
manner as described above, by subtracting or adding XOR
gates to the XOR Boolean gates 100. The table of FIG. 5 has
some example larger binary inputs and their encoded C
values (the equations for these larger arbitrary binary inputs
are omitted). Again, these values are by way of example, and
any number of additional binary inputs may be processed as
described above.

The method of encoding C values may result in an
additional bit per value as compared to the input binary
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number. For example, a 4-bit code in the range [0,15]
permits addends of 16, 8, 4, 2, and 1, which requires 5 bits
to encode. However, in further embodiments, the continuous
rounding routine may employ a further step that permits
transmission using the same number of bits as the input
binary number.

In particular, as can be seen from the tables in FIG. 6, the
set of encoded C values generated by the XOR Boolean
gates 100 always produces even parity (an even number of
1 bits). (The set of alternate encodings always produce odd
parity.) Therefore, the low-order bit of each C value does not
need to be transmitted or stored and the transmitted/stored
value can be truncated (step 204, FIG. 3). Upon receipt (or
any time the full C value is desired), the low order bit can
be derived from the XOR of the remaining bits where all bits
in the encoded value C have been transmitted. Specifically,
remaining bits in the C value may be XORed together to
provide the low order bit C,. One possible arrangement of
XOR gates 110 for this purpose is shown in FIG. 7. The
XOR gates 110 will include one less XOR gates 112 than
there are bits in the truncated C value. The example in FIG.
7 shows the derivation of the last bit of a 5-bit C value
(earlier truncated to 4 bits) by the 3 XOR gates 112 in step
204.

The truncation of the low order bit allows the C value to
be transmitted in the same number of bits as the original
binary value. The table of FIG. 8 shows the select integer
values, their binary representation, the full C value, the
truncated C value and the derived low order bit. In further
embodiments, the full length of the C value may be trans-
mitted and/or stored, and used as a parity bit to verify the
transmitted/stored C value.

Once an encoded C value has been transmitted and/or
retrieved from memory, the C value may be decoded as
explained with reference to the flowchart of FIG. 9 and XOR
gates shown in FIG. 10. In general, the result for output bits
consists of the XOR across the bits from the corresponding
input through to the highest-order bit. The low order bit C,,,
representing +1, which as shown earlier is not required for
storage or transmission, is not included in the conversion
process. This may be true regardless of whether or not the
low order bit was transmitted or stored. In FIG. 10, the
remaining bits in the C value are numbered C,,.; accordingly.

FIG. 10 shows XOR Boolean gates 120 including XOR
gates 122 for decoding C values. In the example shown,
there are three XOR gates 122, but there may be more or less
gates 122 in further examples having more or less bits in the
value C to decode. In embodiments, there may be one less
XOR gate 122 than there are bits in a truncated C value.

In step 240, the decoding portion of the continuous
rounding routine begins decoding of the C value to a binary
value D. Where all bits of the value C have been received
and are being decoded, the decoded value D will equal the
original binary value B. The decoded value D may be
different than the original value B, where for example not all
of the bits of the value C were transmitted.

In order to decode the C value, in step 240, the high order
bit D,,_; may be set to the high order bit C,, in the C value.

D, ,=C,. (Eq. 11)

Next, in steps 246, 248 and 250, the remaining output
binary bits Dn-1:0 are calculated by a cascaded XORed of
bits Cn:1. For each value “k” from n-2 to 0:

Dy=Dsy "Cryy-

It should be noted that for the above equation to be valid, “k”
is iterated downward, from “n-2” to 0. A table of encoded

(Eq. 12)
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C values, decoded binary values D and corresponding inte-
ger values is set forth in FIG. 11.

The continuous rounding routine described above gener-
ates a correctly rounded value for the number of bits
received (including any derived low-order bit), whether all
or some bits are received. However, where less than all bits
are received (step 254, FIG. 9), it is possible to reduce both
maximum and average error on decode by a post-rounding
routine (step 256).

In a 4-bit example representing positive integers in the
range [0,15], it may happen that transmission is interrupted,
for example after the first 3 bits. If the 3 bits received are,
for example, “101”, the value 16-4=12 is the closest
rounded value to the actual value for the number of bits
received.

Note that this code represents 2*-22=12, which is guar-
anteed to be no further from the actual value than the other
multiples of 2%, namely 8 and 16. Therefore it can be inferred
that the actual correct value is in the range [10,14], and the
decoded value of 12 is already in the center, with a maxi-
mum error of +2 and an average error (assuming linear
distribution) of 1. However, in this example, the value of
12 was approached from the 16 side (16—-4=12) rather than
from the 8 side (16-8+4=12). Thus, this indicates that the
actual value is also closer to 16 than to 8, and is therefore in
the range [12,16]. The intersection of these two ranges
results in a final range of [12,14]. Therefore, choosing to
decode the incomplete stream “101xx” (including low order
bit) as 13 rather than 12 reduces the maximum error to =1
and the average error to V5. This can be implemented in
hardware or software simply by appending “01” or “11” to
the received bits.

Although there are two possible C value encodings for
each binary input value, the continuous rounding routine
described above generates a single (the same) value in each
instance. For example, the value 12 is always encoded as
11100 rather than 10100. However, a value of 11 rather than
13, for example, would encode as 11101 which, when
truncated to 3 bits, would in fact generate the “alternate”
encoding of 111xx for 12 which would result in a final range
of [10,12].

This post-rounding technique also works with non-integer
values. For example, if a value is encoded as 4.10 repre-
senting the (approximate) range [0.000, 15.999], and a
partial stream is received of 10100.1 (a value of 12.500) then
it is known that the actual result is in the range [12.250,
12.500]. A decode of 12.375 can then be accomplished by
simply appending “01” to 10100.1 and decoding the partial
stream 10100.101=16-4+0.5-0.125=12.375.

As noted above, each number (other than zero) can be
encoded in two ways: a standard encoding and an alternate
encoding. For example, the value 5 can be encoded as 8—4+1
or as 8-4+2-1. Both of these preserve the rule that any
intermediate sum cannot be further from the target number
than an earlier sum, but in one case there is a “lateral move”:
8-4=4 is 1 way from the target of 5, while 8-4+2=6 is the
same distance away. The XOR Boolean gates 100 of the
continuous rounding routine produce the standard encoded
C value. However, in embodiments, the continuous rounding
routine may be implemented using routines other than XOR
Boolean gates 100. In such embodiments, there may be
instances where it is more efficient to use the alternative
value for software decoding because it uses less add opera-
tions.

The table of FIG. 12 shows integer values (in this
example, 0-15), the input binary number B, the standard
encoded C value (not truncated), the alternating-sign equa-
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tion for the standard encoded C value, the alternate encoded
C value (not truncated), and the alternating-sign equation for
the alternate encoded C value. As shown, there is no
alternative C value for integer 0.

As also seen in FIG. 12, the alternate C values all have an
odd number of “1” bits. As such, the low order bit may be
omitted when the alternate C value is transmitted and/or
stored, and may be reconstructed as described above for
decoding (assuming all of the bits of C have been received).
FIG. 12 also shows that the alternate encoded C values can
have more or less “1” bits than the standard encoding.

It is noted that when decoding an encoded value C, the
continuous rounding routine uses at least some number of
high order bits in the encoded value C to derive the binary
value D. However, once a bit in the C value is lost or
missing, the bits below the missing bit (lower order than the
missing bit) are disregarded, even if present. If one lower-
order bit is missing, it may be treated as if the lower-order
bit, and all bits below it, are missing.

Encoding binary numbers in to C values as described
above provides advantages for the operation of a computing
device. A full encoded C value (truncated or not) decodes
into an accurate representation of the original binary number
from which the C value was obtained. However, it may
happen that less than all of an encoded C value is received,
for example due to transmission error. Or it may happen that
less than all of an encoded C value is stored, due to limited
storage space. In these instances, when the shortened C
value is decoded, the present technology ensures that the
decoded value is properly rounded up or down to most
closely approximate the original value. This improves the
accuracy, efficiency and functionality of a computing device
working with decoded C values in that the computing
system will be operating with data that best approximates
the original data.

Further, there are instances where only coarse approxi-
mations of data are transmitted. For example, when trans-
mitting graphics data, a coarse approximation (some number
of higher order bits) may be transmitted to provide a coarse
graphic. Thereafter, the remaining low order bits may be
transmitted to complete the graphic. In instances where
coarse approximations of data are transmitted and/or stored,
transmitting and/or storing that data as encoded C values
ensures the best rounding and accuracy of the course data
approximations.

FIG. 13 illustrates a computing system 300 capable of
executing the encoding and decoding portions of the con-
tinuous rounding routine, in hardware, software or a com-
bination of the two. The computing system 300 may also
transmit, store and/or receive encoded C values in accor-
dance with the present technology. As noted above, enabling
the computing system 300 to work with numbers which are
properly rounded up or down when less than all bits are
received improves the efficiency, accuracy and functionality
of the computing system 300.

The computing system 300 is one example of a suitable
computing environment and is not intended to suggest any
limitation as to the scope of use or functionality of the
present system. Neither should the computing system 300 be
interpreted as having any dependency or requirement relat-
ing to any one or combination of components illustrated in
the exemplary computing system 300.

The present system is operational with numerous other
general purpose or special purpose computing systems,
environments or configurations. Examples of well-known
computing systems, environments and/or configurations that
may be suitable for use with the present system include, but
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are not limited to, personal computers, server computers,
multiprocessor systems, microprocessor-based systems, net-
work PCs, minicomputers, hand-held computing devices,
mainframe computers, and other distributed computing
environments that include any of the above systems or
devices, and the like. In the distributed and parallel process-
ing cluster of computing systems used to implement the
present system, tasks are performed by remote processing
devices that are linked through a communication network. In
such a distributed computing environment, program mod-
ules may be located in both local and remote computer
storage media including memory storage devices.

With reference to FIG. 13, an exemplary computing
system 300 for use in performing the above-described
methods includes a general purpose computing device.
Components of computing system 300 may include, but are
not limited to, a processing unit 304, a system memory 316,
and a system bus 321 that couples various system compo-
nents including the system memory to the processing unit
304. The system bus 321 may be any of several types of bus
structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus also known as Mezzanine bus.

The system memory 316 includes computer storage media
in the form of volatile and/or nonvolatile memory such as
read only memory (ROM) 331 and random access memory
(RAM) 332. A basic input/output system (BIOS) 333, con-
taining the basic routines that help to transfer information
between elements within computing system 300, such as
during start-up, is typically stored in ROM 331. RAM 332
typically contains data and/or program modules that are
immediately accessible to and/or presently being operated
on by processing unit 304. By way of example, and not
limitation, FIG. 13 illustrates operating system 306, appli-
cation programs 310, other program modules 336, and
program data 337.

The computing system 300 may also include other remov-
able/non-removable, volatile/nonvolatile computer storage
media. By way of example only, FIG. 13 illustrates a hard
disk drive 341 that reads from or writes to non-removable,
nonvolatile magnetic media, a magnetic disk drive 351 that
reads from or writes to a removable, nonvolatile magnetic
disk 352, and an optical disk drive 355 that reads from or
writes to a removable, nonvolatile optical disk 356 such as
a CD-ROM or other optical media. Other removable/non-
removable, volatile/nonvolatile computer storage media that
can be used in the exemplary operating environment
include, but are not limited to, magnetic tape cassettes, flash
memory cards, DVDs, digital video tape, solid state RAM,
solid state ROM, and the like. The hard disk drive 341 is
typically connected to the system bus 321 through a non-
removable memory interface such as interface 340, and
magnetic disk drive 351 and optical disk drive 355 are
typically connected to the system bus 321 by a removable
memory interface, such as interface 350.

The drives and their associated computer storage media
discussed above and illustrated in FIG. 13 provide storage of
computer readable instructions, data structures, program
modules and other data for the computing system 300. In
FIG. 13, for example, hard disk drive 341 is illustrated as
storing operating system 344, application programs 345,
other program modules 346, and program data 347. These
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components can either be the same as or different from
operating system 306, application programs 310, other pro-
gram modules 336, and program data 337. Operating system
344, application programs 345, other program modules 346,
and program data 347 are given different numbers here to
illustrate that, at a minimum, they are different copies.

A user may enter commands and information into the
computing system 300 through input devices such as a
keyboard 362 and pointing device 361, commonly referred
to as a mouse, trackball or touch pad. Other input devices
(not shown) may be included. These and other input devices
are often connected to the processing unit 304 through a user
input interface 360 that is coupled to the system bus 321, but
may be connected by other interface and bus structures, such
as a parallel port, game port or a universal serial bus (USB).
A monitor 391 or other type of display device is also
connected to the system bus 321 via an interface, such as a
video interface 390. In addition to the monitor 391, com-
puters may also include other peripheral output devices such
as speakers 397 and printer 396, which may be connected
through an output peripheral interface 395.

As indicated above, the computing system 300 may
operate in a networked environment using logical connec-
tions to one or more remote computers in the cluster, such
as a remote computer 380. The remote computer 380 may be
a personal computer, a server, a router, a network PC, a peer
device or other common network node, and typically
includes many or all of the elements described above
relative to the computing system 300, although only a
memory storage device 381 has been illustrated in FIG. 13.
The logical connections depicted in FIG. 13 include a local
area network (LAN) 371 and a wide area network (WAN)
373, but may also include other networks. Such networking
environments are commonplace in offices, enterprise-wide
computer networks, intranets and the Internet.

When used in a LAN networking environment, the com-
puting system 300 is connected to the LAN 371 through a
network interface or adapter 318. When used in a WAN
networking environment, the computing system 300 typi-
cally includes a modem 372 or other means for establishing
communication over the WAN 373, such as the Internet. The
modem 372, which may be internal or external, may be
connected to the system bus 321 via the user input interface
360, or other appropriate mechanism. In a networked envi-
ronment, program modules depicted relative to the comput-
ing system 300, or portions thereof, may be stored in the
remote memory storage device. By way of example, and not
limitation, FIG. 13 illustrates remote application programs
385 as residing on memory device 381. It will be appreciated
that the network connections shown are exemplary and other
means of establishing a communications link between the
computers may be used.

In summary, embodiments of the present technology
relate to a method for encoding a binary number for at least
one of storage on a computing system and transmission from
the computing system, comprising: (a) encoding the binary
number into an encoded value, such that one or more high
order bits that remain in the encoded value when one or
more lower order bits are omitted always represent a correct
rounding of the encoded value up or down to most accu-
rately approximate the original binary number; and (b)
performing at least one of storing the encoded value and
transmitting the encoded value.

In further embodiments, the present technology relates to
a computer readable storage medium for programming a
processor of a computing system to perform a method of
encoding an n-bit binary number, B, into an encoded value,
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C, for at least one of storing the encoded value on the
computing system and transmitting the encoded value from
the computing system, comprising: (a) setting a high order
bit n in the encoded value C equal to a high order bit n-1 in
the binary number B; (b) setting the middle bits C,,_; through
C, to the XOR of bits B,,_; through B,,_, respectively (c)
setting the low order bit C, in the encoded value equal to the
low order bit in the binary number B,,.

In other embodiments, the present technology relates to a
method of decoding an encoded value, C, into a correspond-
ing binary number, D, the binary number including n bits,
the encoded value being transmitted from and/or stored on
a computing system, the method comprising: (a) setting a
high order bit D, ; of the binary number to the high order bit
C,, of the encoded value; and (b) obtaining remaining bits
D,,_,., of the binary number by performing a sequential XOR
of the bits D, with C, with k decreasing from n-2 to 1 in
successive XOR operations.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims. It is intended that the scope of the
invention be defined by the claims appended hereto.

I claim:

1. A method for encoding a binary number for at least one
of storage on a computing system and transmission from the
computing system, comprising:

(a) encoding the binary number into an encoded value for
the purpose of representing a correct rounding of the
encoded value up or down to approximate the original
binary number after one or more lower order bits in the
encoded value are omitted, said step (a) comprising the
step of encoding the binary number into the encoded
value, such that successive “1” bits in the encoded
value, raised to their respective binary weights, are
added to and subtracted from a sum to approach the
original binary number; and

(b) performing at least one of storing the encoded value
and transmitting the encoded value.

2. The method of claim 1, said step (a) comprising the step
of encoding the binary number into the encoded value, such
that successive “1” bits in the encoded value, raised to their
respective binary weights, are alternatingly added to and
subtracted from the sum to approach the original binary
number.

3. The method of claim 1, said step (a) comprising setting
the high order bit in the encoded value equal to the high
order bit in the binary number, and setting the low order bit
in the encoded value equal to the low order bit in the binary
number.

4. The method of claim 3, said step (a) further comprising
the step of obtaining one or more intermediate bits in the
encoded value between the high order bit and low order bit
by XORing successive bits in the binary number with
successive next order lower bits in the binary number.

5. The method of claim 1, said step (a) comprising the step
of encoding an n-bit binary number into an n+1 bit encoded
value.

6. The method of claim 1, said step (a) comprising the step
of'encoding the binary number into an encoded value having
an even number of true bits.

7. The method of claim 6, wherein having an even number
of “1” bits in the encoded value enables truncation of the low
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order bit in the encoded value such that the number of bits
in the encoded value equals the number of bits in the binary
number.

8. The method of claim 6, wherein having an even number
of “1” bits in the encoded value enables the low order bit in
the encoded value to be used as a parity bit to verify correct
transmission or storage of the encoded value.

9. A computer readable storage medium for programming
a processor of a computing system to perform a method of
encoding an n-bit binary number, B, into an encoded value,
C, for at least one of storing the encoded value on the
computing system and transmitting the encoded value from
the computing system, comprising:

(a) setting a high order bit n in the encoded value C equal

to a high order bit n-1 in the binary number B;

(b) setting the middle bits C,,_; through C, to the XOR of

bits B, ; through B, , respectively; and

(c) setting the low order bit in the encoded value equal to

the low order bit in the binary number.

10. The method of claim 9, said steps (a), (b) and (c)
comprising the step of encoding the n-bit binary number into
an n+1 bit encoded value.

11. The method of claim 9, said step (a) comprising the
step of encoding the binary number into an encoded value
having an even number of “1” bits.

12. The method of claim 11, further comprising the step
of truncating the low order bit in the encoded value such that
the number of bits in the encoded value equals the number
of bits in the binary number.

13. The method of claim 12, further comprising the step
of deriving the truncated low order bit C, in the encoded
value by performing an XOR of the bits C,, through C,.

14. The method of claim 11, further comprising the step
of verifying the encoded value using parity to check the
number of “1” bits in the encoded value.

15. A method of decoding an encoded value, C, into a
corresponding binary number, D, the binary number includ-
ing n bits, the encoded value being transmitted from and/or
stored on a computing system, the method comprising:

(a) setting a high order bit D, of the binary number to the

high order bit C,, of the encoded value; and

(b) obtaining remaining bits D,, ,.,, of the binary number

by performing a sequential XOR of the bits D, with C,,
with k decreasing from n-2 to 1 in successive XOR
operations.

16. The method of claim 15, wherein the number of bits
in the encoded value that is decoded is equal to the number
of bits in the corresponding binary number.

17. The method of claim 15, wherein the number of bits
in the encoded value that is decoded has one greater number
of bits than the corresponding binary number.

18. The method of claim 15, wherein the lowest order bit
in the encoded value that is decoded is disregarded in step
(b).

19. The method of claim 15, further comprising a step (c)
in the event the initial encoded value is missing one or more
bits, said step (c) comprising a post-rounding routine to
further refine the corresponding binary number to further
limit the maximum difference between the original and
decoded values.

20. The method of claim 15, wherein the binary number
obtained by the decoding of the encoded value is equal to a
second binary number which is encoded into the encoded
value, where the encoded value has at least as many bits as
the second binary number.
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21. A computing system, comprising:

a processor for encoding a binary number into an encoded
value for the purpose of representing a correct rounding
of the encoded value up or down to approximate the
binary number after one or more lower order bits in the
encoded value are omitted, the processor encoding the
binary number into the encoded value, such that suc-
cessive “1” bits in the encoded value, raised to their
respective binary weights, are added to and subtracted
from a sum to approach the original binary number; and

a storage medium for storing the encoded value.

22. The computing system of claim 21, the processor
encoding the binary number into the encoded value, such
that successive “1” bits in the encoded value, raised to their
respective binary weights, are alternatingly added to and
subtracted from the sum to approach the original binary
number.

23. The computing system of claim 21, wherein the binary
number is an n-bit binary number, B, the processor encoding
the n-bit binary number B into the encoded value, C, by: a)
setting a high order bit n in the encoded value C equal to a
high order bit n-1 in the binary number B; b) setting the
middle bits C,_; through C, to the XOR of bits B,,_; through
B,,_, respectively; and c) setting the low order bit in the
encoded value equal to the low order bit in the binary
number.

24. The computing system of claim 21, further comprising
a network connection for transmitting the encoded value to
a second computing system separate from the first comput-
ing system.

25. The computing system of claim 21, the processor
further receiving a second encoded value, and the processor
decoding the second encoded value into a second binary
number which accurately approximates the first binary num-
ber for the number of bits in the second encoded value
received.

26. The computing system of claim 21, the processor
further receiving a second encoded value, C, and the pro-
cessor decoding the second encoded value C into a second
binary number, D, including n bits, by: a) setting a high
order bit D, of the binary number to the high order bit C,
of'the encoded value; and b) obtaining remaining bits D,, ,
of'the binary number by performing a sequential XOR of the
bits D, with C, with k decreasing from n-2 to 1 in successive
XOR operations.

27. A computing system, comprising:

a processor for encoding a binary number into an encoded
value for the purpose of representing a correct rounding
of the encoded value up or down to approximate the
binary number after one or more lower order bits in the
encoded value are omitted, the processor encoding an
n-bit binary number into an n+1 bit encoded value; and

a storage medium for storing the encoded value.

28. The computing system of claim 27, the processor
encoding the binary number into the encoded value, such
that successive “1” bits in the encoded value, raised to their
respective binary weights, are alternatingly added to and
subtracted from a sum to approach the original binary
number.

29. A computing system, comprising:

a processor for encoding a binary number into an encoded
value for the purpose of representing a correct rounding
of the encoded value up or down to approximate the
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binary number after one or more lower order bits in the
encoded value are omitted, the processor encoding the
binary number into an encoded value having an even
number of true bits; and
a storage medium for storing the encoded value. 5
30. The computing system of claim 29, the processor
encoding the binary number into the encoded value, such
that successive “1” bits in the encoded value, raised to their
respective binary weights, are alternatingly added to and
subtracted from a sum to approach the original binary 10
number.
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